

Stand alone measures
ooooooooo

Portfolio measures
oooooo

Required return
ooooo

Summary
oo

Risk and return

The basics

David J. Moore, Ph.D.

www.efficientminds.com

March 12, 2013

Outline

- 1 Stand alone measures
 - Definitions and notation
 - Expected return and risk
 - Bringing risk and return together
- 2 Portfolio measures
 - Portfolio return
 - Portfolio risk
- 3 Required return
 - Total vs. market risk
 - Calculating required return
- 4 Summary
 - What you saw in this presentation...

Outline

1 Stand alone measures

- Definitions and notation
- Expected return and risk
- Bringing risk and return together

2 Portfolio measures

- Portfolio return
- Portfolio risk

3 Required return

- Total vs. market risk
- Calculating required return

4 Summary

- What you saw in this presentation...

Historical, expected, required

- Historical returns (\bar{R}): The realized or after-the-fact return.
- Expected return ($E[R] = \hat{R}$): The return that equates the current price with **expected** future cash flows.
- Required return (R): The return required for delayed compensation and market risk.
- Notation:

- Summation

$$\sum_{i=1}^n \odot_i = \odot_1 + \odot_2 + \cdots + \odot_n$$

- Product-ation

$$\prod_{i=1}^n \odot_i = \odot_1 \times \odot_2 \times \cdots \times \odot_n$$

Arithmetic vs. geometric mean

- Arithmetic mean is a **forward-looking** measure. Statistically it is BLUE (best linear unbiased estimator). It is the best estimate of next period's value:

$$\text{arithmetic mean} = \hat{R} = \frac{1}{n} \sum_{t=1}^n R_t = \frac{1}{n} (R_1 + R_2 + \dots + R_n)$$

- Geometric mean is a **backward-looking** measure. It measures the actual returns (after-the-fact in IFM10 terminology) realized in the past:

$$\text{geometric mean} = \bar{R} = \left(\prod_{t=1}^n RR_t \right)^{1/n} - 1 = (RR_1 \times RR_2 \times \dots \times RR_n)^{1/n} - 1$$

- You *must* use relative returns RR_t when computing the geometric mean.
- IFM10 uses \bar{R} to represent the realized or after the fact return. In the past I have used \bar{R} to represent the arithmetic mean and G for geometric mean. From this point forward I will use \hat{R} for arithmetic mean and \bar{R} for geometric mean.

Outline

1 Stand alone measures

- Definitions and notation
- **Expected return and risk**
- Bringing risk and return together

2 Portfolio measures

- Portfolio return
- Portfolio risk

3 Required return

- Total vs. market risk
- Calculating required return

4 Summary

- What you saw in this presentation...

Historical vs. probability input data

- When dealing with stock returns you are typically given historical data.
- When dealing with sales data you are typically given sales expectations for various potential states of the world.
- The calculations are the same whether you are dealing with returns, dollar amounts, heights, number of units, etc. Here I show return examples.

Historical data

Year (t)	R_t
1	10%
2	-5%
3	7%

Probabilities

Demand (i)	Pr_i	R_i
Weak	0.2	-5%
Normal	0.6	7%
Strong	0.2	10%

Calculations

Given historical data r_t

Expected return:

$$E[R] = \hat{R} = \frac{1}{n} \sum_{t=1}^n R_t \quad (1)$$

The risk (variance) is calculated as:

$$\sigma^2 = \frac{1}{n-1} \sum_{t=1}^n (R_t - \hat{R})^2 \quad (2)$$

Given probabilities Pr_i and returns R_i

Expected return:

$$E[R] = \hat{R} = \sum_{i=1}^n (R_i \times Pr_i) \quad (3)$$

The risk (variance) is calculated as:

$$\sigma^2 = \sum_{i=1}^n \left((R_i - \hat{R})^2 \times Pr_i \right) \quad (4)$$

- See if you can take the data from the previous slide and compute expected returns and variances.
- Note the **standard deviation** σ is the square root of the **variance** σ^2 : $\sigma = \sqrt{\sigma^2}$

One more way to calculate expected return

- Recall the definition of expected return: The return that equates the current price with expected future cash flows.
- Expressed mathematically:

$$P_0 = \sum_{t=1}^n \frac{D_t}{(1+R)^t} \quad (5)$$

- If we impose some structure on Eq. (5), specifically constant growth of dividends at rate g , the new equation is:

$$P = \frac{D_1}{R-g} \quad (6)$$

where $D_1 = D_0(1+g)$

- We can rearrange Eq. (6) to arrive at another expected return measure:

$$\hat{R} = \frac{D_1}{P_0} + g = \frac{D_0}{P_0} (1+g) + g \quad (7)$$

In other words, given the current dividend D_0 , the current stock price P_0 , and the expected dividend growth rate g , we can compute the expected return \hat{R} .

Outline

1 Stand alone measures

- Definitions and notation
- Expected return and risk
- **Bringing risk and return together**

2 Portfolio measures

- Portfolio return
- Portfolio risk

3 Required return

- Total vs. market risk
- Calculating required return

4 Summary

- What you saw in this presentation...

Coefficient of variation

- Someone tells you they “beat the market” with an average (arithmetic) return of 15% over the past 5 years.
- Did they beat the market? The answer is you do not know.
- You need to know what level of risk was involved.
- Insert coefficient of variation:

$$CV = \frac{\sigma}{\bar{R}}$$

- CV measures units of **total** risk per unit of expected return.
- Lower CV means less risk and more return → lower is better!
- Your friend “beat the market” if they had a lower CV than the market. ☺

Outline

- 1 Stand alone measures
 - Definitions and notation
 - Expected return and risk
 - Bringing risk and return together
- 2 Portfolio measures
 - Portfolio return
 - Portfolio risk
- 3 Required return
 - Total vs. market risk
 - Calculating required return
- 4 Summary
 - What you saw in this presentation...

Portfolio return

Portfolio expected return $E[R_p] = \hat{R}_p$

- You can compute the portfolio expected return two ways:
 - 1 Compute portfolio return by time period t or state of the world i .
Treat $R_{p,t}$ or $R_{p,i}$ as an individual security. Then apply formulas (1) and (3) to $R_{p,t}$ and $R_{p,i}$, respectively.
 - 2 For each security j compute $E[R_j] = \hat{R}_j$ then apply this formula:

$$E[R_p] = \hat{R}_p = \sum_{j=1}^n (w_j \hat{R}_j) = w_1 \hat{R}_1 + w_2 \hat{R}_2 + \cdots + w_n \hat{R}_n \quad (8)$$

- Presuming 40% in stock A ($w_a = 0.40$) and 60% in stock B ($w_b = 0.60$):

Historical data			
Year (t)	$R_{a,t}$	$R_{b,t}$	$R_{p,t}$
1	10%	3%	5.8%
2	-5%	4%	0.4%
3	7%	6%	6.4%

Probabilities				
Demand (i)	Pr_i	$R_{a,i}$	$R_{b,i}$	$R_{p,i}$
Weak	0.2	-5%	3%	-0.2%
Normal	0.6	7%	4%	5.2%
Strong	0.2	10%	6%	7.6%

Outline

- 1 Stand alone measures
 - Definitions and notation
 - Expected return and risk
 - Bringing risk and return together
- 2 Portfolio measures
 - Portfolio return
 - **Portfolio risk**
- 3 Required return
 - Total vs. market risk
 - Calculating required return
- 4 Summary
 - What you saw in this presentation...

Portfolio risk

- Unlike portfolio expected return, portfolio risk is not the weighted average of the individual variances: $\sigma_p^2 \neq \sum w_i \sigma_i^2$.
- In reality, the portfolio risk will be less. A brief look at portfolio theory is provided in later slides.
- For now, we have enough data and tools to compute portfolio risk without worrying about portfolio theory.
- Begin with portfolio return by time period $R_{p,t}$ or state of the world $R_{p,i}$ and the portfolio expected return \hat{R}_p .

Given historical data R_t

$$\sigma_p^2 = \frac{1}{n-1} \sum_{t=1}^n (R_{p,t} - \hat{R}_p)^2 \quad (9)$$

Given probabilities Pr_i and returns R_i

$$\sigma_p^2 = \sum_{i=1}^n \left((R_{p,i} - \hat{R}_p)^2 \times Pr_i \right) \quad (10)$$

Portfolio theory: co-movement

- The *absolute* measure of co-movement is covariance σ_{ab} .

Given historical data R_t

$$\sigma_{ab} = \frac{1}{n-1} \sum_{t=1}^n (R_{a,t} - \hat{R}_a)(R_{b,t} - \hat{R}_b) \quad (11)$$

Given probabilities Pr_i and returns R_{ai} and R_{bi}

$$\sigma_{ab} = \sum_{i=1}^n (R_{a,i} - \hat{R}_a)(R_{b,i} - \hat{R}_b) Pr_i \quad (12)$$

- The *relative* relationship between co-movements of returns of returns is the correlation coefficient ρ :

$$\rho = \begin{cases} +1.0 & \text{perfect positive correlation} \\ 0 & \text{no correlation} \\ -1.0 & \text{perfect negative correlation} \end{cases}$$

- Covariance and correlation are related in the following manner:

$$\rho_{ab} = \frac{\sigma_{ab}}{\sigma_a \sigma_b} \quad (13)$$

Portfolio theory: portfolio risk

- For the two-security case portfolio risk σ_p is calculated as:

$$\sigma_p^2 = w_a^2 \sigma_a^2 + w_b^2 \sigma_b^2 + 2w_a w_b \rho_{ab} \sigma_a \sigma_b \quad (14)$$

- In general for n securities:

$$\sigma_p^2 = \sum_{i=1}^n w_i^2 \sigma_i^2 + \sum_{i=1}^n \sum_{\substack{j=1 \\ i \neq j}}^n w_i w_j \sigma_{ij} \quad (15)$$

$$= \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij} \quad (16)$$

$$= \sum_{i=1}^n \sum_{j=1}^n w_i w_j \rho_{ij} \sigma_i \sigma_j \quad (17)$$

- Note: as the number of securities increases, the importance of each security's variance decreases.
- For fun, compute the portfolio risk using Eqs. (9) and (14).

Total vs. market risk

Outline

1 Stand alone measures

- Definitions and notation
- Expected return and risk
- Bringing risk and return together

2 Portfolio measures

- Portfolio return
- Portfolio risk

3 Required return

- Total vs. market risk
- Calculating required return

4 Summary

- What you saw in this presentation...

Total and market risk

- The **total risk** measure σ has two components
 - Diversifiable or idiosyncratic risk that we do not bother measuring.
 - **Non-diversifiable** or **market risk** measured by β .
- An investor is not rewarded for bearing diversifiable risk. Why should you receive additional return per unit of risk that you could have eliminated?
- You are compensated for bearing non-diversifiable market risk.
- For more information see IFM10 page 52.

Measuring market risk

- Market risk is measured by β .
- Beta is obtained by performing the market model regression:

$$R_t = \alpha + \beta R_{m,t}$$

- Where R_t is the return of the stock in question at time t and $R_{m,t}$ is the return of the market at time t .

β	Interpretation
$\beta < 1$	Below average risk
$\beta = 1$	Average risk
$\beta > 1$	Above average risk

- Calculation of beta in a portfolio is straightforward:

$$\beta_P = \sum_{j=1}^n w_j \beta_j$$

Calculating required return

Outline

- 1 Stand alone measures
 - Definitions and notation
 - Expected return and risk
 - Bringing risk and return together
- 2 Portfolio measures
 - Portfolio return
 - Portfolio risk
- 3 Required return
 - Total vs. market risk
 - **Calculating required return**
- 4 Summary
 - What you saw in this presentation...

From market risk to required return

- When you purchase a stock you are (1) delaying your consumption and (2) taking on *market risk*. You must be compensated for both.
- The total compensation is called the **required return**.
- Required return R is measured by the Security Market Line (SML) or CAPM equation:

$$R = R_f + \beta (E[R_m] - R_f)$$

where $E[R_m] - R_f$ = market risk premium
 R_f = compensation for delayed consumption
 β = number of units of market risk
 $\beta (E[R_m] - R_f)$ = compensation for bearing market risk

What you saw in this presentation...

Outline

- 1 Stand alone measures
 - Definitions and notation
 - Expected return and risk
 - Bringing risk and return together
- 2 Portfolio measures
 - Portfolio return
 - Portfolio risk
- 3 Required return
 - Total vs. market risk
 - Calculating required return
- 4 Summary
 - What you saw in this presentation...

What you saw in this presentation...

Many things...

- The distinction between historical return (\bar{R}), expected return (\hat{R}), and required return (R).
- How to calculate historical return with the geometric mean: \bar{R}
- How to calculate expected return given historical data (arithmetic mean), when given a probability table, and with current market information (D_1/P_0 , g): \hat{R}
- How to calculate risk (variance): variance σ^2 for individual securities; covariance σ_{ab} and ρ_{ab} between securities.
- How to calculate portfolio expected return \hat{R}_p and portfolio risk σ_p^2 two ways.
- How to calculate required return using CAPM:
$$R_i = R_f + \beta (E[R_m] - R_f)$$
 - Note: this applies to individual assets and portfolios.